
Bringing Online Gaming to the Cloud:
a Case Study

Michele Pirovano
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
Email: michele.pirovano@elet.polimi.it

Abstract—Online gaming has been a main trend in the field
of video games for more than ten years and it is still rapidly
evolving, with new game archetypes and tailored software ar-
chitectures being created every year. These games are typically
harder to create and maintain than offline games due to the
limitations of the current web infrastructures that conflict with
the need for fast, fluid and fun games. However, the boom
of Cloud Computing services in the recent years has created
new opportunities and removed many of the limitations that
are typically tied to software deployed on the Internet. It has
been shown that the development of online games can benefit
from the integration of Cloud services into their design in order
to solve many of the problems that plague their development
and maintenance. In this paper, we first discuss the current
designs of online gaming architectures and present their limits.
The solutions offered by using Cloud services in respect to these
video games are then explored and the new problems that arise
from this combination are addressed. We also present a case
study by deploying an online First Person Shooter multiplayer
video game on currently available Cloud infrastructures (using
Amazon Elastic Compute Cloud) and detailing our architecture
specifically designed for this purpose. We show that, where once
entering the market of online games was solely affordable by big
companies due to the high infrastructure costs, a single person
could now create and deploy an online game.

I. INTRODUCTION

Online video gaming has seen its market grow relentlessly in
the last years. More and more triple-A videogames now sport
some kind of Internet functionality, from the simple download
of additional content to full-fledged persistent online worlds.

In addition, totally new game archetypes were born during
the recent years, such as the Massive Multiplayer Online
games (MMO), where thousands of people can play together at
the same time (see Figure 1), Browser games, simple and fast
games designed to work in most browsers, and Social games,
which focus on social play and communication. These are all
forms of videogames designed to take advantage of Internet
access. It has been reported that the Online game market has
reached in 2010 a value of more than $23 millions1.

Online games require ad-hoc hardware and software archi-
tectures, as well as game design efforts around the technology
limitations of Internet play. Most online videogames require
a persistent connection as well as real-time responses to
guarantee good interaction times. In addition, most competitive

1http://www.mcvuk.com/news/read/global-games-market-worth-over-
100bn/07021

online games are in need of a strict anti-cheating and anti-
hacking policy. Additional requirements of many online games
are the massive storage of the user data of up to millions of
people and the stable hosting of even thousands of concurrent
users.

Online game architectures can benefit from the introduction
of Cloud-based services, resulting in reduced costs for the
developer and a more enjoyable and novel experience for the
player. Most of the specific requirements of online games,
as will be further discussed throughout this paper, can be
fulfilled by employing services offered by Cloud providers.
Among those services, we can mention scalable computational
power, persistent and fault-free storage and elasticity to be
beneficial to the current online gaming solutions.

In this paper, we aim to assess the feasibility of deploying an
online game on a Cloud infrastructure and analyze the major
design and technology issues and opportunities of this novel
integration.

Chapter III presents the current online games architectures
and explores their design peculiarities. In chapter IV, Cloud
services useful to the online gaming market are detailed,
pointing out what limitations can be surpassed. A case study
is then presented in section V, where the details of deploying
an online game on the Cloud are presented. Section VI finally
presents conclusions and directions for future work.

II. RELATED WORK

The peculiar needs of online games, especially persistent
world online games, have been discussed throughly in the
years due to the special server architecture requisites they im-
pose (see [1] for an introduction). Ad-hoc server architectures,
tailored to online video games, have been already explored
from as long as ten years ago [2]. Architectures that take
advantage Cloud services for online video games have also
been suggested in more recent years (see [3] for an example).

Cloud services are indeed already being used effectively
by a few online game producers, especially for smaller-scale
MMOs (such as Dragon Nest2 or the games of PixelPan-
demic3) and Social games (such as the games of PlayFish4).
However, these cases are still rare and there is still much
room for improvement, such as bringing Cloud services to

2http://dn.cherrycredits.com/
3http://pixelpandemic.net/
4http://www.playfish.com/

different genres of games. The OnLive5 service must also
be mentioned, as it provides games to be played using any
capable device and broadband connections through the use
of a Cloud infrastructure. A few Cloud solutions have been
already put to use for online game deployment, such as
Terracotta, that alongside SmartFoxServer can be used to
create a clustered online game deployed on the Cloud [4].

Figure 1. A typical crowded scene when playing a MMOG. Copyright
Blizzard Entertainment.

III. ONLINE GAME DESIGN

In the current state-of-the-art, the design of online games
and their architectures still presents open issues. The design
space of videogames is often constrained by the technology
required to run them [5], [6]. This is true for classic single
player videogames, and even more so for online multiplayer
videogames, that require their developers to cope with ad-hoc
architectures and, in particular, with the limited bandwidth,
storage space and connection speed.

Apart from turn-based strategy games and similar games,
who are now a minority, online games, much like their offline
counterparts, require real-time interaction. This is usually
obtained through careful design of the game, making sure
to communicate rapidly and with small packets of data, only
sending necessary data. For this reason, online games usually
use protocols such as TCP (for persistent connections and
absolutely needed data) and UDP (for fast, but unreliable,
communication). Multiplayer online videogames thus require,
for the most part, persistent connections to achieve high speed
and reliable transmission. This fact often differentiates games
from other web-based applications.

Cheating and hacking are another problem that online
game developers must cope with. Anti-cheating is needed for
competitive online games, while anti-hacking is a requirement
for those multiplayer video games that provide real-valued
virtual items. Many on-line video games now provide virtual
items that can be earned in-game or even bought with real
money. This is often the case with recent massive online
games, that work with micro-transactions economies. Such
games also require secure and reliable databases since hackers

5http://www.onlive.com/

may access user accounts and steal or delete their items, or
players may even duplicate their own items, therefore ruining
the game economy (for instance, see [7]). In addition, those
same massive multiplayer games can reach huge amounts of
users, with some games reaching millions of subscribers6.
Since those games require the servers to hold all information
on players and their avatars, the storage space needed can
become as massive as the game itself, which leads to greatly
increased server costs. The game simulation servers also need
to host hundreds if not thousands of users at the same time
and thus require high computational power. Again, for massive
multiplayer games, this can become quite costly. Architectures
thus need to be somewhat scalable and this is not easy to
do with typical server infrastructures, which may require the
developer to hold and maintain a big cluster of datacenters.
Different servers can and are used for the two purposes
of storage and simulation.

Taking into account such requirements, online videogames
typically present one of three basic client-server architectures.
The choice is usually based on the game genre and its
requirements.

The most common architecture uses a dedicated server, that
is an authoritative server that runs the game (or a model of
the game) by itself, enforcing its rules. Clients can connect to
the server and interact with it. This architecture protects from
cheating and does not favor any client, but it is costly due to
the maintenance and running costs of the server machines. The
architecture is used by multiple-user multiplayer games such
as competitive action games or massive multiplayer games and
is currently the preferred one by large companies [8].

A second architecture uses a listen server. In this case, the
server is hosted by one of the users, who also plays on the
same machine through a client. The other clients connect to
the server and play with him. This removes the server costs
from the game developer, but it is much easier to cheat in
such servers (especially for the host) and the host will usually
get a delay advantage, since he will have a faster channel of
communication with the server. In addition, should the host
user disconnect, the server also shuts down.

A last architecture is called peer-to-peer. With this architec-
ture, there is no server and the peers just communicate their
actions to each other. Each peer then reconstructs the results
of all actions. This architecture is usually used for two-player
strategy games, where the sheer number of units would require
too much information to be sent from and to a server.

The architectures focus on the game servers but usually
also support a data server that stores all the user data. This
is especially common for dedicated server architectures
and in particular with MMOs.

IV. ENTER THE CLOUD

The term Cloud Computing has been used in the recent
years with some confusion on its meaning. For additional

6http://wow.joystiq.com/2010/10/07/world-of-warcraft-reaches-12-million-
players/

clarity, we will refer to the convention defined by [9] and
summarize with the term Cloud the following definition: Cloud
Computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
Such a definition encompasses very diverse products and, as
such, for the purpose of this paper we will instead focus on
what elements of Cloud Computing can be useful for online
gaming.

Online games architectures can greatly benefit from cloud
solutions through different services, which can be used to
address the requirements that have been presented in section
III. From the previous analysis, we summarize the main
requirements of online games in the order that they are ad-
dressed in the rest of this section: large and reliable storage
space for holding user data, high computational power for
game servers, anti-cheating and anti-hacking safeguards,
real-time interaction and thus persistent connections.

First of all, the storage requirements for the data servers,
especially critical for massive online games, can be easily
fulfilled using those Cloud services that provide a reliable and
secure source of storage space. Cloud Computing in its more
etymological definition can also be useful to online gaming, as
most online games require servers to be always up and ready,
often even providing persistent worlds. Video game users are
even likely to abandon the game altogether if the reliability
of the servers is not high enough. Among the services of the
Cloud providers, reliable and scalable computation power is
offered, often with a pay per hour billing contract.

The online gaming market is characterized by great and
periodic fluctuations in user load in daily, weekly and monthly
periods. In Figure 2, the daily fluctuations in user load on
the Steam platform can be seen7. From the plot, we can see
that during the course of the day the number of concurrent
users logged on the platform oscillates from a minimum
of around 2.5 millions to a maximum of almost 5 millions
of users. This means that at certain times half of the
Steam servers are likely to be idling. This periodic activity
thus often requires online videogame developers to provide
servers even when there is a small number of users logged
in. It is not rare for game servers to get full and clogged
on peak hours and, in this case, user discontent quickly kicks
in. In addition, due to the ever-changing flickering tastes of
gamers, an online game developer may be confronted with
unusual drops or rises in the concurrent logged user base.
The elasticity provided by Cloud Computing services both
for computation and storage can therefore be a great ally to
the game developers. Most online games are already designed
to be easily scalable and thus the transfer from a typical
architecture to a Cloud-based architecture is painless. Another
important advantage of switching to Cloud providers for the
server infrastructure is the fact that the game developer does

7http://store.steampowered.com/stats/

not have to deal with possibly faulty hardware and its lifecycle
issues, time-consuming operating system set-ups or physical
server maintenance. By shifting this burden from the game
developer to the Cloud provider, the developer can allocate
more resources to the good design and implementation of the
actual game and thus create a better product.

It is clear that one main advantage of the Cloud services
lies in the reduced infrastructure cost in terms of money
and time. As a consequence another advantage can be
found as the Cloud opens the market of online games,
typically reserved for big and affirmed companies, to smaller
developers, to the point that a single person could create and
run an online multiplayer game (as is shown in this article).

In our case study (see Section V) we take advantage of the
scalable computing power and the elasticity offered by current
Cloud providers. We focus on dedicated server architectures
since their only downside is the infrastructure cost, a problem
taht can be relaxed thanks to these Cloud services.

Figure 2. The periodic user activity on the Steam platform.

Regarding anti-hacking and anti-cheating policies, we
must address the doubts that many people have regarding
the security of Cloud services. The main issue that is tied
to Cloud services in respect to security is the destiny of
user’s sensible data. Typically, when a user registers to an
online service, his data is held by the service provider that
is in charge of providing a secure and private storage space
for it. When using cloud services, however, such data is
held on unknown servers somewhere in the world and the
service provider usually never even knowns whether this
data is close or near to his location, nor who is in charge of
handling it. This fact can become a serious concern and is
one of the main open issues of Cloud services. It has been
reported that most information technology professionals
trust the Cloud providers, who claim that the security
they offer is high due to the decentralized data centers
[10]. In the case of online games, there are two types of
security concerns: cheating and hacking. Cheating is easily
handled by the authoritative game server and thus by the
game developer’s application. For this reason, the presence
of the Cloud doesn’t make a change. Hacking, on the other
hand, is stopped by highly secure data servers and secure
connections. This is especially needed for sensible user data
such as their credit card information, but is also important

for in-game virtual items. The burden of anti-hacking thus
shifts from the game developer to the Cloud provider and
can become a problem if the Cloud provider is not trusted
enough. This is still an open issue, but security on the
Cloud is listed as a top priority and as such this problem
could be resolved in the near future.

A particular discussion must be made about persistent
connections. As previously mentioned, having to guarantee
a persistent connection to the server is a peculiarity of on-
line games in respect to other online applications. This fact
becomes problematic when using Cloud Computing services.
In most other online applications, the user usually connects
to the server to send a message and get the response. The
connection is usually closed afterwards. Due to this, load
balancing infrastructures have been devised for Cloud services
which allow the user to be transparently redirected to a new
server when the original one is clogged. The load balancing
also takes care of scaling the application capacity by creating
or terminating server instances. With the persistent connections
of online games, this cannot be done. The user must stay
connected to the same server even if it is full of other people
and the server cannot be shut down even if there is just one
person on the server, since kicking the user out is not an
option.

This problem could be attacked by changing the initial
design of the video game. The typical massive online game
world is divided into virtual zones (see [11]), where one server
holds one or more virtual zones. The players will move around
the game world to explore it and play in it and thus change
virtual zones. This way, the persistent connection to one server
may be closed from one server and opened in another one,
introducing however a connection delay and thus interrupting
the real-time game flow. Many massive multiplayer online
games already use this solution. The same solution can be
beneficial for load balancing, since when the user switches
from one server to another, the load balancing logic can
redirect the user to the proper server, without the user even
noticing. In addition, the user may be directly encouraged to
leave servers which are too crowded or empty by the design of
the game. By designing the game around this idea, a natural
balance of user load would arise. To our knowledge, no game
currently pursues this idea, even if this can arise naturally in
some massive multiplayer games when a server becomes too
crowded (and thus the player may have too much delay) or
empty (since the player will not have anybody to play with).
The latter case is beneficial, but the former presents a bad side
effect (the delay) which is not desirable, hence the need for
specific design.

This virtual world division, however, is not done for some
genres of games such as First Person Shooters (FPS), since the
users will not change servers, they will keep playing on the
same server (often with the same people) until they willingly
disconnect. A different solution altogether to virtual world
division may be found by modifying the load balancing logic
and scope, as presented in our case study, as explained in the
next section.

V. BRINGING GAMES TO THE CLOUD: A PRACTICAL CASE

As a case study to assess the feasibility of bringing online
gaming to the Cloud, this chapter discusses the design and
deployment of an online multiplayer game on the Ama-
zon Elastic Compute Cloud (EC2) infrastructure. The EC2
service allows the utilization of virtual computer instances
for computation, using Amazon’s Cloud resources. Software
used in the accomplishment of this study comprises Unity3D,
SmartFoxServer, MySQL and the Amazon Web Service Java
SDK.

Figure 3. The classic multiplayer FPS architecture

Figure 4. The extended multiplayer FPS Cloud architecture

A. An Online First Person Shooter

The game brought to the Cloud is a simplified version of a
First Person Shooter (FPS), similar to many current successful
multiplayer games, built with the Unity3D videogame devel-

opment framework8. The Unity3D framework allows game
developers to easily create prototypes of videogames for early
testing, as well as providing all the features needed to create
a complete videogame and deploy it on several platforms,
removing this burden from the game developer, who can then
concentrate on designing and creating a successful game. Our
game is a modification of the FPS test example provided
by the SmartFoxServer documentation9. The game consists
of a 3D arena that players can enter, playing as an armed
soldier against online opponents. The goal of the game is to
collect points by shooting and thus killing the virtual avatars
of opponents. Health packs and ammo packs are scattered
around the map, adding complexity to the individual strategies.
The application in which the game runs is composed of two
communicating parts: the client and the server.

The client is deployed as a browser game and can thus
be played in any browser, provided the Unity Web Plugin is
installed. This is the only software that the player needs in
order to play.

The server is hosted on a specific machine (which is not
required to be the same as the client’s) and it is built using
the SmartFoxServer2X framework (Sfs2x). This framework
provides a complete solution for deploying videogames on
the Internet. Sfs2x provides C# APIs for Unity3D, used to
communicate with the server, and Java APIs for the server
machine.

Users can log into the game server through the client, create
virtual game rooms and play with other people in the same
room. While users play, the server holds a model of the
game world. The server receives messages from the clients,
it simulates and updates the whole game state, then returns
the updated information to the clients. The architecture is thus
a dedicated server and can be summarized by Figure 3. As
mentioned, it can reduce cheating and does not grant unfair
advantages to a specific player, but these gains are usually
offset by the costs of running the server. In particular, for
a game with a large user base, hundreds of different servers
may be needed to meet the users’ requests. Taking into account
this problem, the inner workings of the game server have been
here extended in order to take advantage of Cloud services.
Our aim is to decrease the usual costs of dedicated servers
by dynamically instantiating and removing virtual instances
(and thus server machines). The new architecture designed
and implemented for this study can be seen in Figure 4.

B. Our Architecture

In our architecture, the user first logs into a special server
here named Load Balancer. The Load Balancer server is
responsible of balancing the number of Game Servers that
must be running simultaneously to meet the user load demand.
The Load Balancer receives user connections and redirects
them to the proper Game Server, It also decides when to shut
down or open new Game Server instances using the Amazon

8http://unity3d.com/
9http://docs2x.smartfoxserver.com/ExamplesUnity/fps

Web Service Java SDK. Load balancing features are often
provided by the Cloud provisioner, as is the case with the
Amazon Elastic Load Balancing service, but, as previously
mentioned, online games require persistent connections. When
the user logs into a server, the session persists until the user
himself logs out willingly (or, in extreme cases, he is kicked
out by the authoritative server). Thus, the Load Balancer has
been here implemented anew.

Both the Load Balancer server and the Game Servers are
hosted on Amazon EC2 micro instances. All the instances are
based off an Ubuntu 10.f standard Amazon instance, with a
SmartFoxServer instance running on them. In particular, all
instances have the 9933 (Sfs2x admin) and 8080 (HTTP)
ports open to the public. The Load Balancer also opens port
3600 for MySQL database access, but only to the rest of the
instances (as such, all instances can read the database). This
configuration is saved as a Security Group through the Amazon
EC2 Web Server Interface. Each Game Server runs with a
Java extension which takes care of inserting information about
the server into a MySQL database which runs on the Load
Balancer. The MySQL database maintains a table of servers.
Each row of this table holds, for each server, its public IP, the
EC2 instance identifier and the number of currently logged
users, which is initialized at zero. The Game Server extension
periodically updates the load of the server in the same database
once every five minutes.

C. Usage Case

The flow of events following the connection of an user to
the game is here detailed and is summarized in Figure 5. The
user initially connects to the Load Balancer server as the client
is started. The IP of the Load Balancer server is already known
by the client application. The user is then logged through
a minimal user interface into the Load Balancer, that reads
the current user load on each Game Server instance from
the shared MySQL database.The Load Balancer then selects
a server according to the following logic. From the list of
running Game Server instances, the servers with more than M
users are not considered, with M being the maximum number
of concurrent users sustainable by a server while ensuring a
maximum delay of dt milliseconds (a value which is defined
according to the game type, usually below 100 milliseconds
for a FPS). During this phase, the servers with zero users
online are marked for removal. The remaining n servers are
then given a candidate value wi for each server i = 1 · · ·n.
This candidate value is partly based on the number of user
currently logged into the server (the more the people, the
lower the value) and it is then offset by a random amount,
inserted here to avoid sending all connections to the same
server if it has always the minimum number of users. At last,
all the servers marked for removal but one have their instance
terminated in order to avoid paying for unused power. One
server, even if it has zero users logged in, is not destroyed in
order to always have at least an empty server fully available
for user peaks. In the case that there are no servers with less
than M users logged in, the Load Balancer will create a new

Game Server instance to be used by the next client, while
redirecting the user to the current least full game server (since
the instance will take a few minutes to start). After the proper
Game Server is found, its IP address is sent to the client,
which automatically connects to it, logs in and starts the game.
This flow of events may seem over-complicated, but since the
SmartFoxServer requires both a connection and login request
for security purposes, we cannot remove any steps. Notice,
however, that all of the steps are automatic and transparent to
the user, as if he was connecting directly to a game server.

Figure 5. The flow of connections when the user starts the game

VI. CONCLUSION AND FUTURE WORK

We present here the results of our study. With our archi-
tecture, we are able to provide a scalable and elastic server
infrastructure for a multiplayer game. Thanks to this fact,
on the one hand, we can scale up the total capacity of the
game servers and thus provide a challenging and satisfying
experience for any number of users, avoiding the delay which
is typical of crowded online game servers. On the other hand,
we avoid spending money on idle servers during shortages of
users. Using an integrated architecture composed of softwares
with free licenses, we were in fact able to create the whole
architecture with no cost, apart from the running costs of the
Amazon EC2 instances, which is quite small and completely
scales with the number of logged users. All of this was the
work of one person, showing that the days when only big

companies with even bigger budgets were the only ones that
could deploy a multiplayer online videogame are over.

In conclusion, Cloud Computing can be an useful asset in
the hands of online video game developers, easing the tedious
and difficult work of setting up and maintaining the server
infrastructures by themselves and thus dedicating effort and
even specific people to the task. Indeed, due to the scalable
costs and no setup issues, we can safely say that the costs
both in terms of money and effort of running an online
game on the Cloud are way lower than doing so with dedicated
machines. The main advantages of bringing online gaming
to the Cloud are thus (i) the reduced costs of deployment
and maintenance and subsequently (ii) the expansion of
the market to smaller companies.

Much work has yet to be done as the appearance of Cloud
Computing in the online videogame field is still recent. We can
point to future work in two areas, for game design. Regarding
game design, in this paper we present our results for a typical
multiplayer game, but the same results could be applied to
less explored designs. The design of online games, typically
limited by the many constraints imposed by the classic server-
client architecture and the high costs of running the servers,
can be expanded thanks to the use of Cloud services. Games
which were only possible offline could now be ported to an on-
line environment in an extremely easier way and with minimal
costs compared to a few years ago.Possibly, new archetypes
could be even created. Regarding server infrastructures,
current MMOs are still using the virtual world division
approach in the handling of multiple servers. We can point
to future work in the creation of dynamic and elastic
clusters of servers hosted on Cloud infrastructures. These
architectures could allow an even greater number of users
to play the same game in the same virtual world than is
possible as of today.

Inside the scope of this project, possible work can be
testing the implemented architecture with a high number
of users, retrieving actual data on system usage and
costs, in order to better compare these costs to classic
architectures.

ACKNOWLEDGMENT

The author wishes to thank professor Dario Maggiorini
for his introduction to online game design and directions for
further research.

REFERENCES

[1] M. Lapi, “Smartfoxserver 2x - server architecture white paper,”
http://www.smartfoxserver.com/downloads/sfs2x/documents/SFS2X
WP ServerArchitecture.pdf, 2012.

[2] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee, “A scalable architecture
for supporting interactive games on the internet,” in Proceedings of
the sixteenth workshop on Parallel and distributed simulation. IEEE
Computer Society, 2002, pp. 60–67.

[3] M. Marzolla, S. Ferretti, and G. D’Angelo, “Dynamic resource pro-
visioning for cloud-based gaming infrastructures,” to appear in ACM
Computers in Entertainment, 2011.

[4] A. Integrated, “Clustering smartfoxserver using terracotta
smartfoxserver,” http://www.smartfoxserver.com/downloads/sfs1/
clustering/SFS clustering A51.pdf, 2012.

[5] J. Schell, The Art of Game Design: Book of Lenses. Elsevier, 2008.
[6] K. Salen and E. Zimmerman, Rules of Play - Game Design Fundamen-

tals. MIT Press, 2003.
[7] T. Phillips, “Diablo 3 duplication ex-

ploit,” http://www.eurogamer.net/articles/
2012-06-11-diablo-3-asian-servers-offline-after-item-duplication-exploit,
2012.

[8] M. Weilbacher, “Dedicated servers in gears of war 3 - scal-
ing to millions of players,” http://www.gdcvault.com/play/1015337/
Dedicated-Servers-In-Gears-of, 2012.

[9] P. Mell and T. Grance, “The nist definition of cloud computing,” Nist
Special Publication, vol. 145, no. 6, p. 7, 2011.

[10] T. Olavsrud and D. Muse, “How secure is the cloud? it pros speak
up,” http://www.cio.com/article/703064/How Secure Is the Cloud IT
Pros Speak Up, 2012.

[11] M. Lapi, “Smartfoxserver 2x - performance and scalability white
paper,” http://www.smartfoxserver.com/downloads/sfs2x/documents/
SFS2X WP PerformanceAndScalability.pdf, 2012.

