3D Audio in Games

Michele Pirovano
Contents

• Why 3D Audio in games... now?
• State of the Art of Audio in Games
 – Geometry
 – Propagation Modeling
 – Rendering/Auralization
• Improving Sound in Games: realtime 3D Audio
 – Visibility-based Beam Tracing
 – Binaural Rendering through Headphones
Why 3D Audio in Games?

• 3D audio (like 3D video) can enhance the gaming experience
 – Greater immersion
 • «I can hear the river flowing behind me»
 – Heightened perception
 • «I can sense enemies coming from that direction»
 – New interaction modalities
 • «I can move around this maze with my eyes closed»

• Many videogame genres can benefit
 – First Person Shooters (localization of enemies, immersion)
 • Example: Half Life
 – First Person Adventure (horror) games (atmosphere)
 • Example: Amnesia
 – Massive Multiplayer Online games (localization)
 • Example: Guild Wars
 – Realistic racing games (immersion)
 • Example: Formula 1
 – «Serious» games (virtual reality training)

[Tozer 2010]
Why 3D Audio... NOW?

• Traditionally, little focus on audio in games due to the race for graphics [Kapralos 2008a]
• The focus in the gaming industry is now moving away from graphics
 – Graphics have reached their pinnacle
 – More resources are available
 – Something else is needed to make a game stand out

• Keep in mind the requirements for any new game feature:
 – Real-time constraints
 – Anything introduced in a game needs to have an impact on the game experience [Scheel 2006]
 – If not performed correctly, a feature may make the game experience worse
 • For 3D video: lowered performance and lower enjoyment [Jaffe 2013]

• *Side note: same issues as with Game AI!*
State of the Art: Geometry

- Placement of point sources and receivers (omnidirectional)

- Material properties are largely ignored

- Geometry content is already available in the form of 3D meshes
 - For sound, less detail is needed (see next slide)
State of the Art: Geometry (cont.)

- Sound wavelengths are 6 orders of magnitude longer than light wavelengths.
- Due to diffraction, sound waves can bend around small objects:
 - Voice frequency is between approximately 300 Hz and 3400 Hz.
 - Speed of sound is 343 m/s.
 - Voice wavelengths are approximately between 10 cm and 1 m.
- Simplification can be performed on the 3D meshes:
 - This is not so easy.
- Better yet, *low poly* meshes should be created by the graphics artists beforehand:
 - This is often already done for objects that may appear far away (Level-Of-Detail-Zero).
 - Also already done for the geometry used in collision checks.

[Anish 2009]

Visual Geometry Acoustic Geometry
State of the Art: Propagation

• Note that most games:
 – are highly dynamic (moving sources, moving receivers, even moving scene geometry)
 – require real-time computation
 – on the other hand, do not need high accuracy

• Typical solution: simple attenuation on distance, no reflection nor diffraction: ignoring Room Impulse Responses (RIRs) [Cowan 2008]
State of the Art: Propagation

• Actual propagation can be (and has been) simulated in real-time
 – Beam tracing [Funkhouser 1998, Anish 2009]
 • No moving of sources nor environment
 • Receiver can be moved in real-time
 – Interactive path walking (fast look-up)
 • Supports specular reflections (extends to diffraction)

• Still not widely used in games, as sources need to move in most games!
 – Think of a First Person Shooter, where enemies move around the map
State of the Art: Rendering/Auralization

• Rendering is simple, usually in mono or, at best, in stereo
 – Amplitude panning (simulates Interaural Level Differences)

• Conveying sound
 – Headphones
 – Loudspeakers Pair
 – Surround-sound systems
 • Limitations:
 – Higher cost and difficult setup -> not for every home
 – No full 3D (only the azimuth is concerned)
 – Works only in the “sweet spot” -> no multiple users

[Tozer 2010, Kapralos 2008a]
Example: Unity

- Common middleware for videogame creation
- Uses FMOD audio library
- Geometry
 - Placement of AudioSources and AudioListeners
- Propagation Modeling
 - Simple distance-based relation
 - Simulation of attenuation (rolloff) and directionality
 - Filters can be applied
 - Ignores diffraction and reflection (no tracing at all)
- Rendering
 - Amplitude panning on loudspeaker pair or headphones
Improving the State of the Art

• Geometry is good enough
 – Use of existing (simplified) geometric scene

• Propagation modeling can be improved
 – Wave methods? Geometric methods? (See next slides)

• Rendering can be improved
 – HRTF modeling for localization (See next slides)
 – Binaural Rendering through headphones
Propagation Improvements

- Wave-based modeling
 - Solving the wave equation is overkill for a game
 - Too much accuracy, too costly computation
- Geometric methods
 - Ray tracing -> aliasing, inefficient
 - Virtual sources -> few games are in a simple rectangular room
 - Beam tracing
 - \textbf{Visibility-based beam tracing}
 - Retains benefits of beam tracing
 - If source changes position (but is still static), we can recompute the beam tree efficiently
 - Able to move source and receivers: works well with game dynamics

[Antonacci 2008, Markovic 2010]
Rendering Improvements: HRTF

• A Head Related Transfer Function models the response of an ear to the sound signal from a point in space
 – Depends on the shape of the upper torso, shoulders, head and pinna -> different for every person
 – Measured with «dummy» heads
 • Hard to measure at home for the player

• The HRTF is dependent on frequency ω and direction θ
 – After 1 meter, we can ignore distance (far-field HRTF)

• Generalized HRTFs can be used for games
 – Obtained by averaging HRTFs
 – May present problems such as localization errors, localization blur, externalization errors, front-back confusion
 – Head tracking can be useful to provide further localization cues

[Kapralos 2008a, Tsakostas 2007]
Chosen Algorithm

1. Start from the simplified geometry of 3D meshes
2. Build the global visibility graph
3. Propagate throught visibility-based beam tracing
 - obtain a beam tree for each (image or real) source
4. Trace paths between sources and receiver
 - obtain a collection of directional beams to the receiver
5. Convolute with HRTFs for localization
6. Binaural rendering through headphones

{Pre-computed}
Visibility-based beam tracing (1)

- Map reflectors to the Ray Space
- Obtain global visibility in the form of a Visibility Diagram $V(R_i)$ for each reflector R_i
Visibility-based beam tracing (2)

Place sources and compute the beams for each source and its images

- Done by scanning visibility diagrams -> fast look-up
- Chosen recursion level for speed/accuracy trade-off
- Builds beam tree of source visibility
Visibility-based beam tracing (3)

Place the receiver (player) and trace the path of the ray i going from each (image) source to the receiver

- Path tracing through ‘dual’ line intersection -> again a fast look-up
Visibility-based beam tracing (4)

- Collect incoming rays into N directional beams
 - \(b(t, \Theta_i) \) will represent the accumulated signal in a beam

\[b(t, \Theta_i) \]

![Diagram showing beam tracing and signal accumulation](image_url)
HRTF convolution

- Convolute the signals through the HRTF for each ear and angle sector to get the final signals.
HRTF convolution

• Convolution requires a lot of computation, but...
 – We can lower the dimensionality of the (usually large) HRTF data sets
 • [Kapralos 2007, 2008b]
 – We can speed-up the computation using the GPU
 • [Hamidi 2009, Cowan 2008]
Conveying Sound

• Once the final sound signal is ready, binaural rendering can be performed through
 – Headphones
 • Sending the correct signal to each ear enables localization
 – Why not a Loudspeakers Pair?
 • Need for crosstalk cancelation [Kapralos 2008a]
 – Can be done in real-time, but it works only in a small sweet spot!

• There is no need for a more complex setup (such as surround-sound systems), since we perform fully-computed auralization [Kleiner 1993]
References

- Tozer, J. - 2010 – An exploration the effectiveness of 3D Sound on video games
- Jaffe, S. – 2013 - Effects of 3D Audio and Video in Video Games
- Anish, C - 2009 - An Introduction to Sound Rendering
- Antonacci, F. et al. – 2008 - Fast tracing of acoustic beams and paths through visibility lookup
- Kapralos, B. et al. – 2007 - Dimensionality Reduction Techniques to HRTFs for Interactive Virtual Environments
- Kapralos, B. et al. - 2008a - Virtual Audio Systems
- Kapralos, B. et al. – 2008b - Dimensionality Reduced HRTFs: A Comparative Study
- Cowan, B. and Kapralos, B. - 2008 - Spatial Sound for Video Games and Virtual Environments Utilizing Real-Time GPU-Based Convolution
- Markovic, C. et al. – 2010 - Visibility-Based Beam Tracing for Soundfield Rendering
- Funkhouser et al. - 1998 - A beam tracing approach to acoustic modeling for interactive virtual environments
Thank You!